

Informe del Comité Científico de la Agencia Española de Seguridad Alimentaria y Nutrición sobre los

efectos del cambio climático sobre la presencia de micotoxinas en los alimentos

Sonia Marín Sillué

Informe del Comité Científico de la Agencia Española de Seguridad Alimentaria y Nutrición sobre los

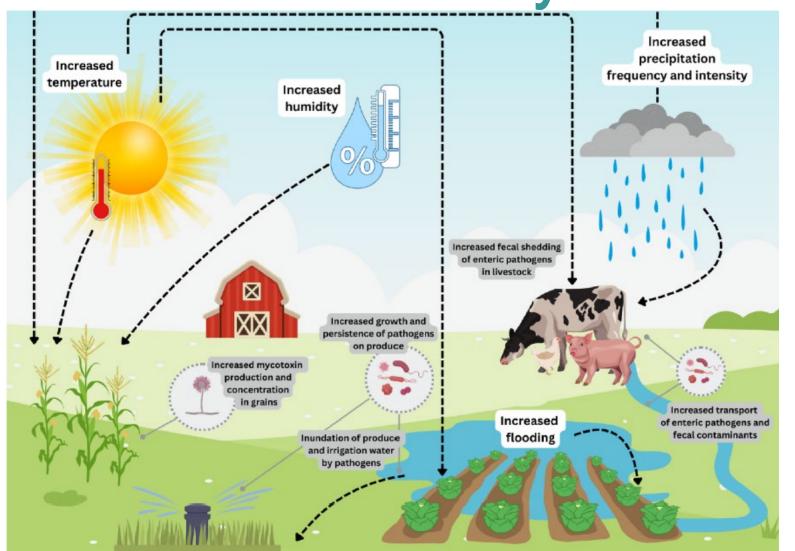
efectos del cambio climático sobre la presencia de micotoxinas en los alimentos

Grupo de trabajo: Sonia Marín Sillué (Coordinadora), Álvaro Daschner, Francisco José Morales Navas, Carmen Rubio Armendáriz, María José Ruiz Leal y Pedro Burdaspal Pérez (AESAN)

Gestión técnica del informe AESAN: Ricardo López Rodríguez

Referencia (ver informe)	Título del Informe	Tipo de riesgo	Fecha de aprobación	Nº Revista Comité Científico
AESAN-2024-004	Informe sobre la relación del cambio climático con la suficiencia alimentaria, y su impacto en el estado nutricional de la población	Nutricional	2024/09	40
AESAN-2023-006	Informe sobre los efectos del cambio climático en la alergia alimentaria.	Nutricional	2023/12	38
AESAN-2021-001	Informe en relación a los efectos del cambio climático sobre la presencia de micotoxinas en los alimentos.	Químico	2021/02	33

Mohos y micotoxinas


- Las micotoxinas son compuestos tóxicos producidos de forma natural por ciertos hongos, como Aspergillus, Penicillium, Fusarium y Alternaria.
- Estos hongos pueden crecer en diversos alimentos, como cereales, frutos secos y especias, especialmente en condiciones cálidas y húmedas.

- Las micotoxinas pueden causar efectos adversos en la salud humana y animal, incluyendo intoxicaciones agudas y problemas crónicos como inmunodeficiencia y cáncer.
- Debido a su estabilidad química, pueden persistir en los alimentos incluso después de su procesamiento.

Micotoxinas y cambio climático

- La FAO identifica peligros químicos sensibles al clima, como las micotoxinas, que se ven agravados por los cambios en la temperatura y la precipitación (FAO, 2020).
- Antes de 1985, se estimaba que el 25% de los cultivos mundiales se veían afectados anualmente por micotoxinas.
- Estudios recientes indican que la cifra probablemente sea mayor, ya que entre el 60% y el 80% de las muestras de cultivos alimentarios presentan niveles detectables de micotoxinas (Eskola et al., 2020).

Micotoxinas y cambio climático

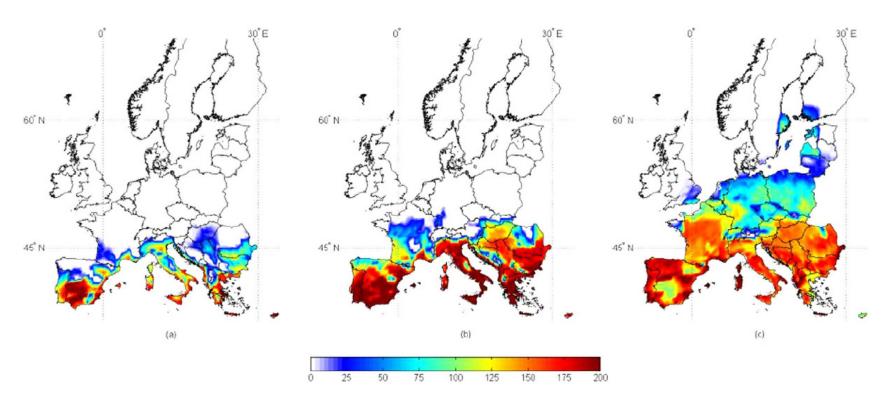
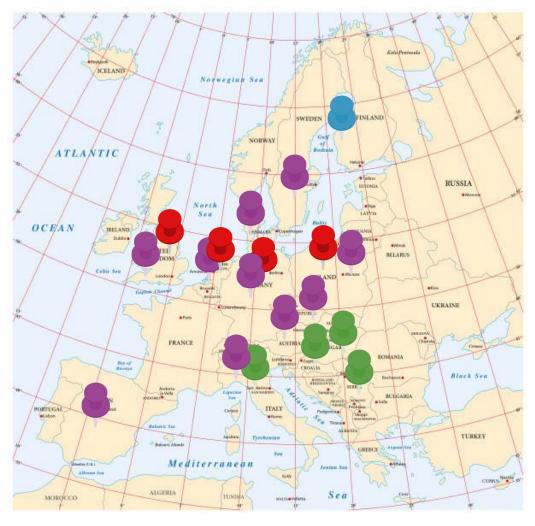


Figure 1. Risk maps for aflatoxin contamination in maize at harvest in 3 different climate scenarios, present, +2 °C, +5 °C. Mean daily data used as input result from 100-year run of the predictive model AFLA-maize in 2254 geo-referenced points throughout Europe, in the 3 scenarios. The scale 0–200 refers to the aflatoxin risk index (AFI), output from the predictive model; increasing the (present (a), +2 °C (b), +5 °C (c)) number, the risk of contamination increases. Maps generated using Mathworks, Matlab. Computer Program, 2012 http://it.mathworks.com/.

Cambio climático y mohos micotoxigénicos

- Cambio de zonas habituales de cultivo.
- Movimiento de cultivos hacia los polos, combinado con movimiento de plagas hacia los polos.
- Sensibilidad/resistencia de cultivos.
- Migración, introducción y establecimiento de especies fúngicas termotolerantes.
- Disminución de especies fúngicas con poca plasticidad fenotípica.


Cambio climático y mohos micotoxigénicos

Mycotoxin	Mould	Temperature Range (°C)	Optimal Temperature (°C)	Water Activity (a _w)	pН
AFs	A. flavus	10–48	33	0.80-0.99	2–10
Ars	A. parasiticus	12–42	32	0.80-0.99	3–8
FUM	F. verticilloides F. proliferatum	2.5–37 5–37	25	0.90-0.99	2.4–3
DON	F. graminearum	5–37	25	0.99	2.4–3

Cambio climático y mohos micotoxigénicos

- Fusarium graminearum el mayor productor de deoxinivalenol en centro y sur de Europa. Norte de Europa: Fusarium graminearum está desplazando a F. culmorum
- Fusarium verticillioides se piensa que incrementará pero es muy prevalente en maíz independientemente de condiciones. Fusarium verticillioides en 2018 en Finlandia.
- En 2003, 2004, 2012, 2015, 2017, 2021 A. flavus en maíz norte Italia, Serbia, desplaza a Fusarium verticillioides, se detecta A. parasiticus.
- En años húmedos (2014) F. graminearum desplaza a F. verticillioides y A. flavus.
- Fusarium langsethiae incrementa en UK, y se extiende por Europa.

Cambio climático y mohos micotoxigénicos Hipótesis

 Podría haber toxinas T2 y HT2 en avena española y la especie de Fusarium responsable podría ser Fusarium langsethiae

• La incidencia de Aspergillus flavus en maíz en el valle del Ebro podría ser significativa actualmente

Estrategias de mitigación

PRÁCTICAS AGRONÓMICAS

CONTROL BIOLÓGICO

MODELOS DE PREDICCIÓN EN CAMPO

TÉCNICAS DE SELECCIÓN

TÉCNICAS DE DESCONTAMINACIÓN

