

Tentative identification of non-volatile compounds in a biodegradable bio-based packaging material using a non-targeted method

11° Shelf Life

International Meeting

May 20th - 23rd 2024

Reggio Emilia, Italy

FoodChem Pack

A. Lestido-Cardama^{1,2*}, P. Vázquez-Loureiro^{1,2}, L. Barbosa Pereira^{1,2}, R. Sendón^{1,2},

J. Bustos³, A. Arroyo³, P. Paseiro Losada¹, A. Rodríguez Bernaldo de Quirós^{1,2}

¹ FoodChemPack research group, Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain ² Instituto de Materiales (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain. ³ National Food Center, Spanish Agency of Food Safety and Nutrition, E-28220 Majadahonda, Spain. *Corresponding author: antia.lestido@usc.es

INTRODUCTION

Bio-based polymers derived from renewable biological resources, and biodegradable polymers that will easily disintegrate and biodegrade in the environment, are being developed and promoted as an alternative to conventional petroleum-based non-biodegradable plastics to be utilized in food packaging. However, these materials generally do not perform as well as conventional plastics and require additional chemicals such as plasticizers, antioxidants, light and UV stabilizers, release agents, crosslinking agents, etc. Alternatively, the polymers are blended together or copolymerized to obtain materials with improved properties. Therefore, these polymers, like other food contact materials, can release low molecular weight components to food and may pose a health risk to consumers. The chemical safety of these sustainable materials has been scarcely studied.

The objective of the present work is to carry out a non-targeted analysis using liquid chromatography with mass spectrometry (LC-MS) to evaluate the presence of monomers and tentatively identify possible oligomers below 1000 Da extracted from polyhydroxybutyrate pellets (PHB), the most common polyhydroxyalkanoate. Also, to provide knowledge on which substances could be targeted in specific migration tests into food simulants or foods.

		Column	Gemini C18 110 Å (150 n	nm × 3 mm, 5 μr	m)
MATERIALS AND METHODSImage: And State An		Mobile phase	ACN and H ₂ O with 0.1% formic acid		
	<image/> <section-header></section-header>	Flow rate	0.4 mL/min		
		Injection volume	10 μL		
		Gradient elution	Initial conditions 80% H ₂ O and 25% ACN,		
			ACN was increasing until 50 % for 25 min		
			and remained for 20 min, and then up to		
			100% ACN for 15 min		
		Data acquisition	Full scan (100-1000 <i>m/z</i>)		
		Source	Positive electrospray ionization (ESI)		
		Vaporizer T ^a	400 °C		
		Capillary T ^a	350 °C		
RESULTS AND DISCUSSION	Table 1: LC-MS conditions				
	RT (min)	Proposed compound	m/z	Adduct	T
RT: 6.03 - 27.40	26.91 NL: 8.37	3HB trimer	277.2, 294.2, 299.2	<u> </u>	
100 95	1.01E7 Тіс мз РНВ_АСN 01_POS_1 12.65	3HB tetramer	363.2, 380.2, 385.2	<u> </u>	
90	00_500 16.26	3HB cyclic/saturated trimer	259.2, 276.2, 281.2	<u> </u>	/
85 ⁻ - - - - - - - - - - - - - - - - - -	18.27	3HB pentamer	449.2, 466.3, 471.2	<u> </u>	Ι
	21.89	3HB hexamer	535.3, 552.3, 557.3	H^{\dagger} , NH_{4}^{\dagger} , Na^{\dagger}	

CONCLUSIONS

25.70	3HB heptamer	621.3, 638.3, 643.3, 659.2	H^{\dagger} , $NH4^{\dagger}$, Na^{\dagger} , K^{\dagger}	
26.91	3HB cyclic/saturated pentamer	431.2, 448.3, 453.2	H^{\dagger} , NH_{4}^{\dagger} , Na^{\dagger}	/
28.30	3HB octamer	707.3, 724.4, 729.3 745.3,	H^{\dagger} , $NH4^{\dagger}$, Na^{\dagger} , K^{\dagger}	
29.70	3HB cyclic/saturated hexamer	517.3, 534.3, 539.3, 555.2	H^{\dagger} , $NH4^{\dagger}$, Na^{\dagger} , K^{\dagger}	I/III
30.46	3HB nonamer	810.4, 815.3, 831.3	NH4 ⁺ , Na ⁺ , K ⁺	
33.50	3HB cyclic/saturated heptamer	620.3, 625.3	NH4 ⁺ , Na ⁺	I/III
34.31	3HB decamer	896.4, 901.4	NH4 ⁺ , Na ⁺	
38.10	3HB undecamer	982.6, 987.4	NH4 ⁺ , Na ⁺	
38.51	3HB cyclic/saturated octamer	706.3, 711.3, 727.2	NH4 ⁺ , Na ⁺ , K ⁺	1/111
45.43	3HB cyclic/saturated nonamer	792.4, 797.3	NH4 ⁺ , Na ⁺	1/111
50.72	3HB cyclic/saturated decamer	878.3, 883.4	NH4 ⁺ , Na ⁺	1/111
52.86	3HB cyclic/saturated undecamer	964.4, 969.4, 985.4	$NH4^+$, Na^+ , K^+	I/III
				•

345.2, 362.2, 367.2

Table 2: Tentative identified PHB oligomers in the ACN extracts. RT: retention time; 3HB: 3-hydroxybutyrate; TC: level of toxicity according to Cramer rules

Several PHB derivatives were tentatively identified for the first time, according to our knowledge, by comparing their m/z characteristics with a homemade database developed taking into account possible starting substances, both linear and cyclic forms.

22.51

Cramer's decision tree was used to estimate the toxicity of the identified compounds, since for these compounds there is still no toxicological data available nor commercial standards available and, therefore, to date no migration limits have been established. Several oligomers were classified as class III (high toxicity), so the next step would be to carry out a risk assessment of these compounds.

The study was financially supported by the Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación and by Fondo Europeo de Desarrollo Regional (FEDER). Ref.No. PID2021-124729NB-100 "MIGRABIOQUANT" (MCIN/AEI/ 10.13039/501100011033/FEDER, UE).

3HB cyclic/saturated tetramer

H⁺, NH4⁺, Na⁺

1/1

I/I