

IDENTIFICATION OF POTENTIAL MIGRANTS IN FOOD PACKAGING AND SUBSEQUENT QUANTIFICATION IN THE CONTAINED FOOD

A. Lestido Cardama¹, J. Bustos², M. T. Nieto², R. Sendón¹, P. Paseiro¹, A. Rodríguez Bernaldo de Quirós^{1*} ¹Departament of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy,

University of Santiago de Compostela (Spain)

²National Food Centre, Spanish Agency for Consumer Affairs, Food Safety and Nutrition,

28220-Majadahonda (Spain) *ana.rodriguez.bernaldo@usc.es

INTRODUCTION

In the food packaging industry, plastic materials are commonly used due to their well-known properties such as flexibility and low-cost, among others. These packaging materials can transfer chemical compounds into the food which may affect not only the safety but also the quality of the packaged food.

From the food safety point of view, it is generally accepted that low molecular weight substances (< 1000 Da) are an issue of concern since they can be absorbed through the gastrointestinal tract and could represent a risk for the consumers' health. In this work, the potential migration of chemicals from the plastic food packaging into the food was investigated. A total of seven samples of fatty dry foods including snacks based on cereals and cookies were selected and analyzed.

MATERIALS AND METHODS

IDENTIFICATION IN THE FOOD PACKAGING

In a first step a GC-MS screening of an extract of the packaging was performed in order to identify potential migrants.

Column	ZB-5MS (30 m x 0,25 mm x 0,25 μm)			
Carrier gas	Helium 1 mL/min			
Injection	Splitless mode	GL		
Injection volume	1 μL			
T ^a program	Initial temperature: 40 °C/ 2 min 9 °C/ min to 300 °C for 3/ 10 min	Thermo		
Data acquisition	m/z range of 30-500			
Mass detector	Electron impact			
Detector T ^a	300 °C			
Transfer line T ^a	300 °C			
Spectrum library	Wiley 8th & NIST/EPA/NIH 11 Mass spectral library			

Table 1: Experimental conditions of GC-MS method.

QUANTIFICATION IN THE CONTAINED FOOD

In the second part of the work, the packaged foods were analyzed by LC-MS using electrospray ionization (ESI) in positive mode.

EXTRACTION PROCEDURE

- I g of pooled and homogenized sample + 10 mL of acetonitrile
- Vortex shake 2 min + sonication for 15 min
- Centrifuge for 10 min at -5 °C at 3500 rpm
- Freeze the supernatant of the three sequential extracts together
- Centrifuge for 20 min at -5 °C at 3500 rpm
- Concentration in a rotatory evaporator at 50 °C to 0.5 mL
- \blacktriangleright Add 0.5 mL of methanol + 50 μ L of internal standard (DEP-d)
- LC-MS analysis

Column	Kinetex Biphenyl 100 A (100 mm x 3 mm x 2,6 μm)		
Mobile phase	A: water acidified with 0.1 % formic acid B: methanol acidified with 0.1 % formic acid		
Injection volume	10 ш		

RESULTS AND DISCUSSION

A great variety of substances were detected in the food packaging including phthalates and other plasticizers as acetyl tributyl citrate (ATBC), diethyl phthalate (DEP), diisobutyl phthalate (DIBP), dibutyl phthalate (DBP) and bis(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DNOP); slip agents as erucamide (ERU); photoinitiators as benzophenone (BP); and UV filters as octocrylene (OCT).

	Regression line (mg/L)	R ²	LOD (mg/L)	Concentration (mg/kg)
DEP	Y=1.759X+0.0247	0.9998	0.005	0.1262-0.8890
BP	Y=12.888X-0.0755	0.9998	0.010	0.0321-1.4621
DIBP	Y=3.5438X+0.2643	0.9981	0.025	<lod-0.2270< td=""></lod-0.2270<>
DBP	Y=4.5643X+0.1313	0.9998	0.050	<lod-0.1272< td=""></lod-0.1272<>
ATBC	Y=11.296X+0.0417	0.9999	0.0025	0.0331-0.1000
ERU	Y=10.176X+0.2702	0.9999	0.050	0.2746-0.6490
OCT	Y=4.6118X+0.6185	0.9977	0.050	<lod-0.2347< td=""></lod-0.2347<>
DEHP	Y=17.025X+1.4562	0.9996	0.050	<lod-0.0527< td=""></lod-0.0527<>
DNOP	Y=22.615X+0.2531	0.9999	0.005	<lod-0.0641< td=""></lod-0.0641<>

Table 3: Parameters of linearity and sample concentrations.

	-			
Flow rate	400 μL/min			Theres
Gradient elution	Time (min)	% A	% B	
	0.00-1.00	30	70	Territoria
	10.00-15.00	0	100	
	15.50-21.00	30	70	
Nebulizer Gas	Nitrogen			
Collision Gas	Argon			
SRM (Collision	BP: 183.1>7	77.2 (29 V);	DEP:

223.1>149.1 (17 V); DBP: 227.2>149.0 (19 V); DEP-d: 227.2>153.1 (17 V); energy) DIBP: 279.2>149.0 (20 V); ERU: 338.4>321.4 (10 V); OCT: 362.2>232.0 (20 V); DNOP: 391.3>149.0 (20 V); DEHP: 391.3>149.0 (24 V); ATBC: 403.2>129.0 (24 V)

Table 2: Experimental conditions of LC-MS method.

The proposed method showed an adequate linearity and acceptable recoveries (> 73.2 %). Benzophenone was found in 43 % of the analyzed samples; among the phthalates DEP was found in almost all samples, whereas DNOP was only found in one sample.

The study was financially supported by the "Ministerio de Economía y Competitividad",

and by "Fondo Europeo de Desarrollo Regional (FEDER), Ref.No. AGL2015-69609-P

"MIGRAEXPO". (MINECO/FEDER,UE).