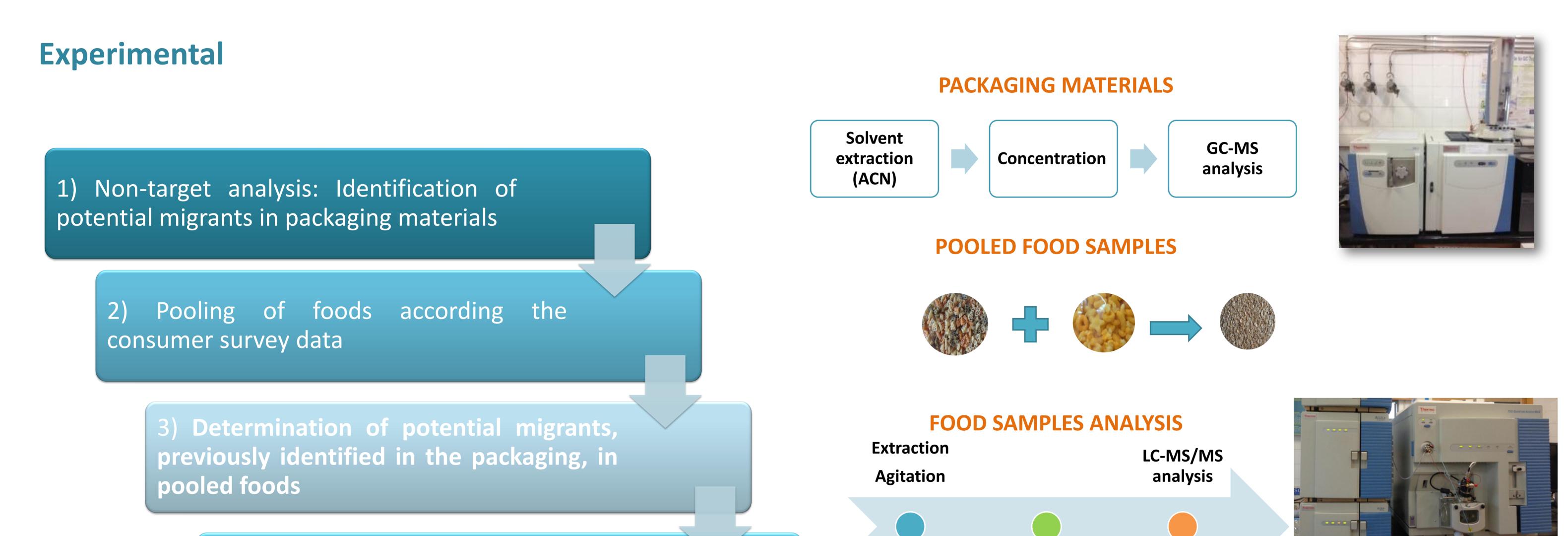


# EXPOSURE TO CHEMICALS FROM FOOD PACKAGING MATERIALS: A TOTAL DIET STUDY APPROACH






V. García Ibarra<sup>1</sup>, <u>A. Rodríguez Bernaldo de Quirós<sup>1</sup></u>, J. Bustos<sup>2</sup>, M.T. Nieto<sup>2</sup>, P. Paseiro<sup>1</sup>, R. Sendón<sup>1</sup> <sup>1</sup>Department of Analytical Chemistry, Nutrition and Food Science. Faculty of Pharmacy, University of Santiago de Compostela, E-15782, Spain <sup>2</sup>National Food Centre, Spanish Agency for Consumer Affairs, Food Safety and Nutrition. 28220- Majadahonda, Spain E-mail: ana.rodriguez.bernaldo@usc.es

## Introduction

Nowadays most of the foods are marketed packaged, and as a result of the interaction between the packaging and the food, migration of packaging components can occur. Therefore packaging materials are a potential source of contamination and are subject to risk assessment [1]. The Total Diet Studies (TDS) are widely used to provide dietary exposure data to both beneficial substances and contaminants. The essential steps of a TDS are the following: should be representative of the whole diet, pooling of foods and foods are analyzed as consumed [2].

In the present work a methodology based on a TDS to evaluate the exposure to chemicals from food packaging materials was developed.

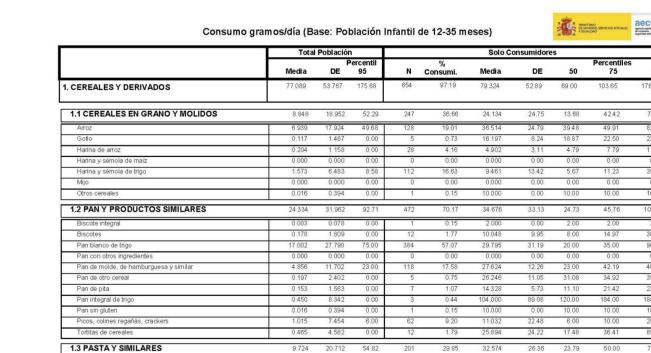


4) Exposure estimation by using migrant concentration data in food and consumption data

### **Results and conclusions**

✓ Different compounds such as diethyl phthalate (DEP), diisobutyl phthalate (DIBP) and bis (2-ethylhexyl) adipate (DEHA) among others were identified in the packaging materials.

✓ The exposure to these contaminants were estimated by using the Spanish national dietary survey Enalia and the concentration data in pooled food.


✓ The proposed approach is a simple and useful screening tool for

Centrifugation

Concentration

 $t = \sum_{k=1}^{n} \frac{C_{i,k} \times L_{i}}{BW_{1}}$ 

#### **EXPOSURE ESTIMATION**



| Compounds                  | Dietary Exposure (µg/kg bw/day) |           |             |
|----------------------------|---------------------------------|-----------|-------------|
|                            | 12-35 months                    | 3-9 years | 10-17 years |
| Diethyl phthalate<br>(DEP) | 0.46                            | 0.33      | 0.18        |
| Diisobutyl                 | 0.09                            | 2.01      | 0.09        |

#### estimating dietary exposure to chemicals from the packaging.

### References

[1] Franz, R. 2005. Migration modelling from food-contact plastics into foodstuffs as a new tool for consumer exposure estimation. Food Addit. Contam. 22(10), 920-937.

[2] EFSA, 2011a. Joint Guidance of EFSA, FAO and WHO – Towards a harmonised Total Diet Study approach: a guidance document, pp. 1–66.

### phthalate (DIPB) Bis (2-ethylhexyl) 0.10 0.02 0.01 adipate (DEHA)

#### Acknowledgement

The study was financially supported by the "Ministerio de Economía y Competitividad", "Fondo Europeo de Desarrollo Regional (FEDER) and by "Agencia Estatal de Investigación" Ref.No. AGL2015-69609-P "MIGRAEXPO". (MINECO/FEDER,UE). V. García Ibarra is grateful for her grant form SENESCYT-Ecuador.