

# IDENTIFICATION OF CHEMICAL COMPOUNDS PRESENT IN MILK PACKAGING

#### A. Lestido Cardama<sup>1</sup>, R. Sendón<sup>1</sup>, J. Bustos<sup>2</sup>, M. I. Santillana<sup>2</sup>, A. Rodríguez Bernaldo de Quirós<sup>1</sup>

<sup>1</sup>Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy. Santiago de Compostela, Spain. <sup>2</sup> National Food Centre, Spanish Agency for Consumer Affairs, Food Safety and Nutrition. Majadahonda, Spain.





Multilayer materials are widely used in food packaging industry. These materials combine various types of plastic film materials or non-plastic films materials (aluminium foil, paperboard, among others) with polymeric adhesives. It is very important to know the composition of the food packaging materials and to identify the compounds that could migrate from the material into the food, with the objective of ensuring that they do not represent a risk for the health of the consumers. Since milk and dairy products are the main components of our diet, in the present study, five samples of milk multilayer packaging (three of whole milk and two of semi-skimmed milk), purchased in a local supermarket, were selected to analyse.

For that purpose, a screening approach was applied to simply and rapidly determine the identity of potential migrants in the packaging by means of solvent extraction technique with subsequent analysis by gas chromatography with mass spectrometry (GC-MS).

### MATERIALS AND METHODS

| IMAGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TYPE OF<br>SAMPLE        | CODE | THICKNESS | FAT CONTENT | <b>TYPE OF MATERIAL</b><br>(internal and external side) |               | EXTR                    | RACTION PR    | OCEDURE                              |                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------|-----------|-------------|---------------------------------------------------------|---------------|-------------------------|---------------|--------------------------------------|-------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Whole<br>milk            | LE01 | 433 µm    | 3.6g/100mL  | Polyethylene                                            |               |                         |               |                                      |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Whole<br>milk            | LEO2 | 431µm     | 3.6g/100mL  | Polyethylene                                            | nackaging (of | nmersion                | Stored at     | Evaporate 10 mL<br>using a stream of | Filter an aliquot<br>with a 0.45 µm |
| Pose Prese P | Whole<br>milk            | LE03 | 296 µm    | 3.6g/100mL  | Polyethylene                                            | known curfaca | 25 mL of<br>cetonitrile | 70ºC for 24 h | nitrogen to 1 mL                     | PTFE membrane<br>filter             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Semi-<br>skimmed<br>milk | LS01 | 430 µm    | 1.6g/100mL  | Polyethylene                                            |               |                         |               |                                      |                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Semi-<br>skimmed<br>milk | LSO2 | 454 µm    | 1.9g/100mL  | Polyethylene                                            |               |                         |               |                                      |                                     |

Table 1: Characteristics of the samples used in the study.

### **RESULTS AND DISCUSSION**

| TR    | Compound                                                          | CAS no.    | SML       | ТС  | Samples                      |
|-------|-------------------------------------------------------------------|------------|-----------|-----|------------------------------|
| 8.19  | Ethyl diglycol                                                    | 111-90-0   | -         | I   | LE01, LE02, LE03, LS01, LS02 |
| 8.58  | Dipropylene glycol                                                | 110-98-5   | 60 mg/kg  |     | LE01, LE02, LE03, LS01, LS02 |
| 9.40  | Acetophenone                                                      | 98-86-2    | -         | Ι   | LE02, LS02                   |
| 12.60 | Caprolactam*                                                      | 105-60-2   | 15 mg/kg  |     | LE01, LE02, LS01, LS02       |
| 14.09 | Eugenol                                                           | 97-53-0    | ND        | I   | LE01, LE02, LE03, LS01, LS02 |
| 16.22 | Butylated hidroxytoluene*                                         | 128-37-0   | 3 mg/kg   | II  | LE01, LE02, LE03, LS01, LS02 |
| 16.25 | 2,4-di-tert-butylphenol                                           | 96-76-4    | -         | I   | LE01, LE03, LS01, LS02       |
| 17.37 | Diethyl phthalate*                                                | 84-66-2    | -         | Ι   | LE01, LE02, LE03, LS01, LS02 |
| 18.02 | Benzophenone*                                                     | 119-61-9   | 0.6 mg/kg | Ш   | LE01, LE02, LE03, LS01, LS02 |
| 20.25 | Isopropyl myristate                                               | 110-27-0   | -         | Ι   | LE01, LE02, LS01, LS02       |
| 20.70 | Diisobutyl phthalate*                                             | 84-69-5    | -         | I   | LE01, LE02, LE03, LS01, LS02 |
| 21.21 | 7,9-Di-tert-butyl-1-oxaspiro<br>[4.5]deca-6,9-diene-2,8-<br>dione | 82304-66-3 | -         | 111 | LE01, LE02, LE03, LS01, LS02 |

A method based on GC-MS was applied using a Trace 1300 Series Gas Chromatograph with a Trace ISQ LT mass detector and an AI 1310 autosampler.

| Injection T <sup>a</sup>     | 300ºC                              |
|------------------------------|------------------------------------|
| Injection volume             | 1μL                                |
| Injection                    | Splitless                          |
| Carrier gas                  | Helium 1mL/min                     |
| Column                       | ZB-5MS (30 m x 0.25 mm x 0.25 μm)  |
| T <sup>a</sup> gradient      | 40-300ºC                           |
| Ionization source            | Electron impact                    |
| Transfer line T <sup>a</sup> | 300ºC                              |
| Detector T <sup>a</sup>      | 300ºC                              |
| Data acquisition             | Full scan (range m/z 35-500)       |
| Spectrum library             | NIST/EPA/NIH 11 v. 2.0 & Wiley 8th |

Table 2: Experimental conditions of GC-MS method.

Full scan chromatograms revealed, after the comparison of the sample mass spectra with available mass spectral libraries, the

| 21.75 | Dibutyl phthalate*                  | 84-74-2   | 0.3 mg/kg  | I | LE01, LE02, LE03, LS01, LS02 |
|-------|-------------------------------------|-----------|------------|---|------------------------------|
| 26.16 | Diethylhexyl adipate*               | 103-23-1  | 18 mg/kg   | Ι | LE01, LE03, LS01, LS02       |
| 27.35 | Bis(2-ethylhexyl)phthalate*         | 117-81-7  | 1.5 mg/kg  | Ι | LE03, LS01                   |
| 28.38 | Octocrylene*                        | 6197-30-4 | 0.05 mg/kg |   | LE02, LS01, LS02             |
| 29.11 | Bis(2-ethylhexyl)<br>terephthalate* | 6422-86-2 | 60 mg/kg   | I | LE02, LS01, LS02             |
| 29.67 | Squalene                            | 111-02-4  | -          | Ι | LE01, LE02, LS01, LS02       |
|       |                                     |           |            |   |                              |

**Table 3:** Some of the chemicals identified in the ACN extracts of the food packaging analyzed.

presence of several compounds. Further confirmatory analysis was performed using commercially available standards (indicated with asterisk in the table). The next step will be to evaluate the migration of the analytes identified in the food matrices in order to carry out an assessment of the exposure with the avaliable consumption data of the population.

## Acknowledgement

The study was financially supported by the Ministerio de Economía y Competitividad, Fondo Europeo de Desarrollo Regional (FEDER) and by "Agencia Estatal de Investigación", Ref.No. AGL2015-69609-P "MIGRAEXPO" (MINECO/FEDER, UE).