

IDENTIFICATION OF NON-VOLATILE COMPOUNDS IN EPOXY RESINS AND ORGANOSOLS INTENDED FOR FOOD CONTACT

<u>P. Vázquez Loureiro¹, A. Lestido-Cardama¹, R. Sendón¹, M^a.I. Santillana², J. Bustos², P. Paseiro Losada¹,</u> A. Rodríguez Bernaldo de Quirós¹

¹Department of Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela 15782-Santiago de Compostela, Spain ²National Food Center, Spanish Agency of Food Safety and Nutrition E-28220 Majadahonda, Spain

Email: patriciavazquez.loureiro@usc.es

INTRODUCTION

- Polymeric coatings are applied in the inner surface of food metal cans acting as a barrier between food and the metal surface. During the polymerization process, side reactions can occur, and reaction products can be formed, which have the potential to migrate into the food and may constitute a risk for the consumer health.
- Epoxy or organosol resins are one of the most used for internal food and beverage can linings due to the excellent chemical resistance.
- In the present study high performance liquid chromatography with fluorescence detection (HPLC-FLD) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) with atmospheric pressure chemical ionisation (APCI) were used for the identification and quantification of compounds in epoxy resins and organosols can samples.

INSTRUMENTATION AND SAMPLE TREATMENT

Column	Phenosphere 80A ODS (150 mm × 3.2 mm internal diameter, 3 μm particle size) EXTRACTION AND MIGRATION CONDITIC				
Flow	0,5 mL/ min	Extraction	Migration		
Injection Volume	10 μL				
Mobile phase	MeOH: ACN (50:50, v/v) (A) and water (B)	100 cm2	234 cm2		
Gradient elution	55% B and 45% A for 2 min., and then the percentage of MeOH: ACN (50:50 v/v) was gradually increased, reaching 75% at minute 16, followed by another gradient to 100% A at minute 23, held constant until minute 28	10 mL ACN (24 h, 70°C)	200 mL EtOH 95% (4.5 h, 60°C)		
Excitation wavelengh	t 225 nm	1:10 ACN 50%	1:1 ACN 50%		
Emition wavelenght	305 nm				
Table 1. Cromatographic	conditions by HPLC-FLD	Figure 1. Sample extraction conditions	Figure 2. Migration assays conditions		

RESULTS AND DISCUSSION

		m/z	DI01	DI04	D106	DI01	DI04	DI06
Compound	tr/min		[mg/dm ²]	[mg/dm ²]	[mg/dm ²]	[mg/kg sim]	[mg/kg sim]	[mg/kg sim]
BPF	5.07	93, 105	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
BADGE.2H20	5.72	226.8, 300.6	0.03	0.004	0.02	0.1	< LOD	0.04
BPE	6.93	196.8, 197.8	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
BPA	8.74	133, 211.8	0.01	0.002	0.003	0.04	< LOD	< LOD
BPB	11.34	210.7, 211.8	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
BADGE.H20	11.83	211, 226	0.03	0.004	0.002	0.01	< LOD	< LOD
BADGE.H2O.HCI	12.41	106.9,134.8	0.01	0.001	0.001	0.02	< LOD	0.01
BPC	13.18	146.9, 239.8	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
BADGE	17.12	134.9,190.8	*	0.01	*	0.5	< LOD	0.3
BADGE.HCI	17.33	106.9, 134.9	*	< LOD	< LOD	< LOD	< LOD	< LOD
BADGE.2HCI	17.56	211, 226	0.02	< LOD	< LOD	0.02	< LOD	< LOD
BPG	19.82	174.9, 294.9	< LOD	< LOD	< LOD	< LOD	< LOD	< LOD
	21.4-	134.8, 106.9				1.5	< LOD	1.5
CyclodiBADGE	21.6		0.5	0.10	0.49			

Table 2. Quantification by HPLC-FLD and m/z used for its confirmation by HPLC-MS (LOD: 0.001 mg/dm^2 ; 0.003 mg/kg sim). * It is not possible its quantification because of interferences of the matrix at the same retention time.

Figure 2. Compounds quantified by HPLC-FLD.

In addition to BPA, BADGE, BADGE.H2O, BADGE.2H2O, BADGE.H2O.HCl and CyclodiBADGE were quantified in the coating extracts, so special attention should be paid to the safety of these compounds.

ACKNOWLEDGEMENTS

This research was funded by the Ministerio de Ciencia, Innovación y Universidades, by Fondo Europeo de Desarrollo Regional (FEDER), and by Agencia Estatal de Investigación Ref. No. PGC2018-094518-B-I00 "MIGRACOATING" (MICIU/FEDER, UE).

Authors are grateful to "Ministerio de Ciencia, Innovación y Universidades" for the Predoctoral fellowship (ref. PRE2019-088195) awarded to Patricia Vázquez Loureiro.

0

