

Non-targeted screening for volatile compounds in food contact bioplastics using Purge and Trap coupled to Gas chromatography-Mass Spectrometry

P. Vázquez Loureiro¹, A. Lestido-Cardama¹, R. Sendón¹, L. Barbosa-Pereira¹, J. Bustos², A. Gasco²,
 P. Paseiro Losada¹, <u>A. Rodríguez Bernaldo de Quirós¹</u>*

¹Dept. Analytical Chemistry, Nutrition and Food Science, Faculty of Pharmacy, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain. ²National Food Centre, Spanish Agency of Food Safety and Nutrition, E-28220 Majadahonda, Spain. *Presenting author: ana.rodriguez.bernaldo@usc.es

1. INTRODUCTION

Bio-based and/or biodegradable plastics are being developed as sustainable packaging solutions. Similarly to petrochemically based polymers bioplastics are subject to the

regulatory requirements of food contact materials in terms of inertness and safety of the material. Both intentionally (IAS) and non-intentionally added substances (NIAS) should be evaluated to protect the consumers' health. Sample preparation is the first step in the analysis of potential migrants and usually it is a laborious and time-consuming procedure. The Purge & Trap system coupled to Gas chromatography-Mass Spectrometry (P&T-GC-MS) has demonstrated to be an efficient analytical tool for the extraction and subsequent analysis of volatile compounds.

In this work, a P&T-GC-MS method was optimized for the analysis of volatile compounds in food packaging samples labeled as bio-based and/or biodegradable and based on polypropylene (PP), polyester and Polylactide (PLA).

2. EXPERIMENTAL

2.1. Samples

Polymer type	Plastic product	Туре		
Polyester base	ester base Bag for foodstuff			
PP	Bag for foodstuff	FP		
PLA	Bag for foodstuff	FP		
PLA	Film	FP		
PLA	Pellets	RM		

FP: Final product; RM; Raw material

Table 1.- Samples description

2.2. Extraction and Analysis

amount

Fig.1.- Purge & Trap system coupled to Gas chromatography-Mass Spectrometry (P&T-GC-MS)

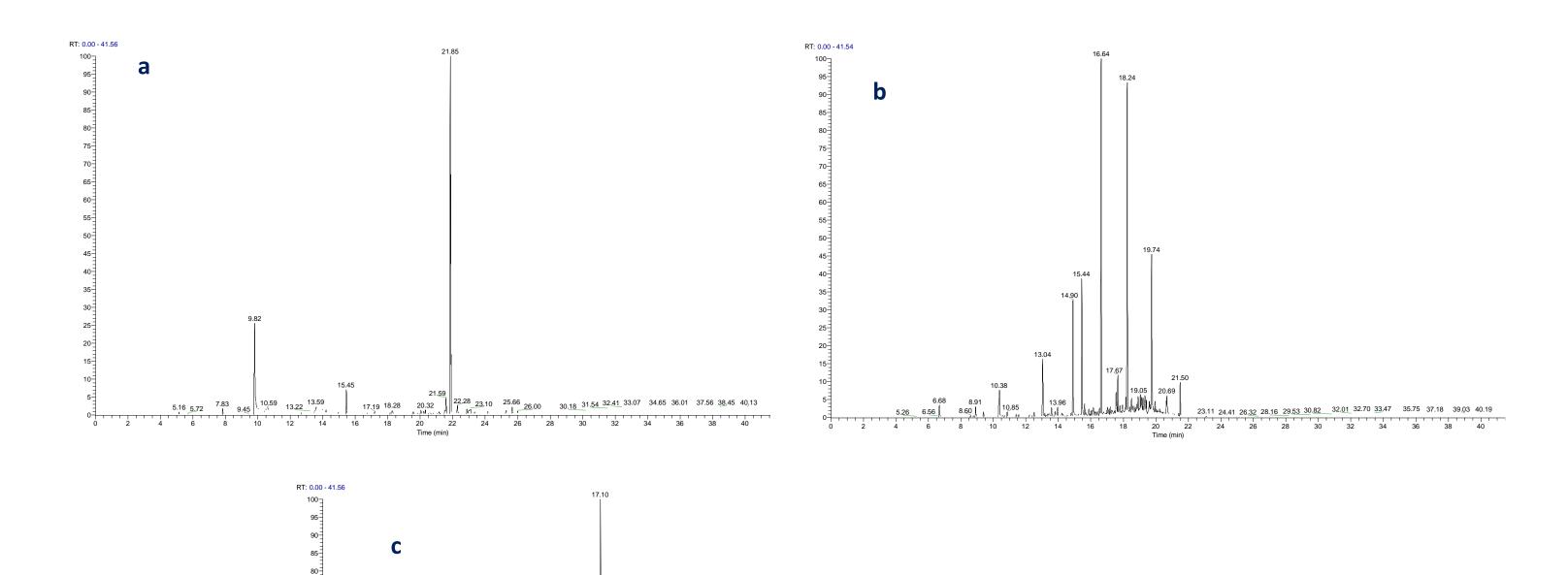
2.3. Analytical conditions

Purge and Trap (P&T)						
Purge Time	30 min					
Purge Flow	40 mL/min					
Тгар	Vocarb 3000					
Desorb t &T	2 min, 250ºC					

Table 2.- P&T conditions

Chromatography					
1.40 µm					
1.					

Table 3.- Chromatographic conditions



Mass Spectrometry					
Acquisition mode	Full scan				
Mass range	<i>m/z</i> 35-500				
Mass spectral libraries	-NIST/EPA/NIH 11 (version 2.0) -Wiley Registry TM 8th edition				

 Table 4.- Mass spectromety conditions

3. RESULTS

t _R (min)	Compound	Polyester base	PP	PLA	Remarks
5.48	Chloroform	\checkmark		✓ (b)	Solvent residue
7.13	2,3-Pentanedione			✓ (f, p)	PLA degradation product (1)
8.59	Toluene	\checkmark	\checkmark	✓ (b, f, p)	Solvent residue
9.81	Propylene Glycol	\checkmark			Monomer
14.91	Undecane	\checkmark	\checkmark	✓ (f, p)	Alkane
16.63	Dodecane	\checkmark	\checkmark	✓ (b)	Alkane
16.79	1,4-Dioxane-2,5- dione,3,6- dimethyl-			✓ (f, p)	Cyclic lactide dimer
21.86	Butylated hydroxytoluene	\checkmark			Antioxidant
23.35	Phthalic acid	\checkmark			Monomer
24.16	Benzophenone	\checkmark			Photoinitiator
26.49	Phthalic acid, diisobutyl ester	\checkmark			Plasticizer

b: bag; f: film; p: pellet

Table 5.- Table extract with some of the compounds tentatively identified in the samples

4. CONCLUDING REMARKS

- P&T coupled to GC-MS has demonstrared to be a powerful analytical tool for the identification of volatile compounds in bioplastics for food contact
- > 120 compounds were detected in the samples analysed
- Both IAS and NIAS were detected
- > Only 16 of the 120 compounds detected in the samples are listed in the Regulation 10/2011 (2)

REFERENCES

(1) Salazar et al. (2017) Polymer Degradation and Stability, 136, 80-88
(2) European Union. (2011). Regulation (EU) No. 10/2011. Official Journal of the European Union, L12, 1–89.

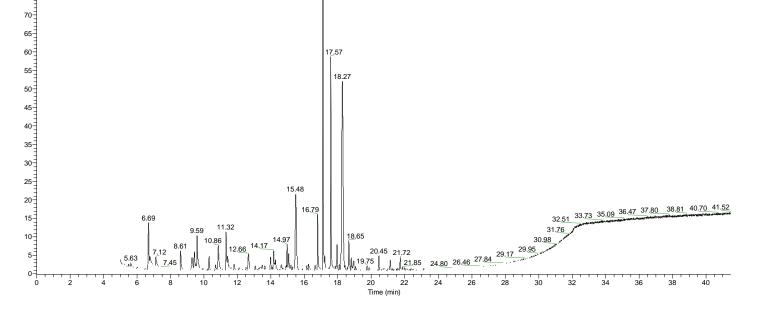


Fig.2.- Chromatograms of a polyester based material (a), PP (b) and PLA (c) samples

ACKNOWLEDGEMENTS

The study was financially supported by the Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación and by Fondo Europeo de Desarrollo Regional (FEDER). Ref.No. PID2021-124729NB-I00 "MIGRABIOQUANT" (MCIN/AEI/ 10.13039/501100011033/FEDER, UE). Authors are grateful to "Ministerio de Ciencia, Innovación y Universidades" for the Predoctoral fellowship (ref. PRE2019-088195) awarded to PVL.

